考不错网

2017高考物理重点公式 2017高考物理大题

考不错网 1

高考物理变速直线运动概念及公式知识点

3、万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。

【 #高考# 导语】信念和斗志宜聚,懈怠和悲观宜散;我们的斗志因信念而燃起,不懈怠、不悲观,落实每一个知识点。 无 整理高考物理变速直线运动概念及公式知识点,一起看看吧。

2017高考物理重点公式 2017高考物理大题2017高考物理重点公式 2017高考物理大题


2017高考物理重点公式 2017高考物理大题


物体在一条直线上运动,如果在相等的时间内速度的变化相等,这种运动就叫做匀变速直线运动。也可定义为:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。

【概念及公式】

沿着一条直线,且加速度方向与速度方向平行的运动,叫做匀变速直线运动。如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动。

s(t)=1/2·at^2+v(0)t=【v(t)^2-v(0)^2】/(2a)={【v(t)+v(0)】/2}t

v(t)=v(0)+at

其中a为加速度,v(0)为初速度,v(t)为t秒时的速度s(t)为t秒时的位移速度公式:v=v0+at

位移公式:x=v0t+1/2at²;

位移---速度公式:2ax=v2;-v02;

条件:物体作匀变速直线运动须同时符合下述两条:

⑴受恒外力作用⑵合外力与初速度在同一直线上。

【规律】

瞬时速度与时间的关系:V1=V0+at

位移与时间的关系:s=V0t+1/2·at^2

瞬时速度与加速度、位移的关系:V^2-V0^2=2as

位移公式推导:

⑴由于匀变速直线运动的速度是均匀变化的,故平均速度=(初速度+末速度)/2=中间时刻的瞬时速度

而匀变速直线运动的路程s=平均速度时间,故s=[(v0+v)/2]·t

利用速度公式v=v0+at,得s=[(v0+v0+at)/2]·t=[v0+at/2]·t=v0·t+1/2·at^2

⑵利用微积分的基本定义可知,速度函数(关于时间)是位移函数的导数,而加速度函数是关于速度函数的导数,写成式子就是ds/dt=v,/dt=a,d2s/dt2=a

于是v=∫adt=at+v0,v0就是初速度,可以是任意的常数

进而有s=∫vdt=∫(at+v0)dt=1/2at^2+v0·t+C,(对于匀变速直线运动),显然t=0时,s=0,故这个任意常数C=0,于是有

s=1/2·at^2+v0·t

这就是位移公式。

推论V^2-6、曲线运动的角速度:ω=θ/tVo^2=2ax

平均速度=(初速度+末速度)/2=中间时刻的瞬时速度

△X=aT^2(△X代表相邻相等时间段内位移,T代表相邻相等时间段的时间长度)

X为位移。

V为末速度

Vo为初速度

【初速度为零的匀变速直线运动的比例关系】

⑴重要比例关系

由s=(at^2)/2,得s∝t^2,或t∝2√s。

由Vt^2=2as,得s∝Vt^2,或Vt∝√s。

⑵基本比例

①第1秒末、第2秒末、……、第n秒末的速度之比

V1:V2:V3……:Vn=1:2:3:……:n。

推导:aT1:2、运用一般公式法,平均速度是简法,中间时刻速度法,初速为零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g。竖直上抛知初速,上升心有数,飞行时间上下回,整个过程匀减速。aT2:aT3:.....:aTn

②前1秒内、前2秒内、……、前n秒内的位移之比

s1:s2:s3:……sn=1:4:9……:n^2。

推导:1/2·a(T1)^2:1/2·a(T2)^2:1/2·a(T3)^2:......:1/2·a(Tn)^2

③第1个t内、第2个t内、……、第n个t内(相同时间内)的位移之比

xⅠ:xⅡ:xⅢ……:xn=1:3:5:……:(2n-1)。

推导:1/2·a(t)^2:1/2·a(2t)^2-1/2·a(t)^2:1/2·a(3t)^2-1/2·a(2t)^2

④通过前1s、前2s、前3s……、前ns的位移所需时间之比

t1:t2:……:tn=1:√2:√3……:√n。

推导:由s=1/2a(t)^2t1=√2s/at2=√4s/at3=√6s/a

⑤通过第1个s、第2个s、第3个s、……、第n个s(通过连续相等的位移)所需时间之比

tⅠ:tⅡ:tⅢ……tN=1:(√2-1):(√3-√2)……:(√n-√n-1)

推导:t1=√(2s/a)t2=√(2×2s/a)-√(2s/a)=√(2s/a)×(√2-1)t3=√(2×3s/a)-√(2×2s/a)=√(2s/a)×(√3-√2)……注⑵2=4⑶2=9

【分类】

在匀变速直线运动中,如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动;如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。

若速度方向与加速度方向同向(即同号),则是加速运动;若速度方向与加速度方向相反(即异号),则是减速运动

速度无变化(a=0时),若初速度等于瞬时速度,且速度不改变,不增加也不减少,则运动状态为,匀速直线运动;若速度为0,则运动状态为静止。

2017高考物理电场知识点讲解:带电粒子在电场中的运动

(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,

1.带电粒子在电场中的加速

这是一个有实际意义的应用问题。电量为q的带电粒子由静止经过电势为U的电场加速后,根据动能定理及电场力做功公式可求得带电粒子获得的速度大小为可见,末速度的大小与带电粒子本身的性质(q/m)有关。这点与重力场加速重物是不同的。

22.库仑定律.带电粒子在电场中的偏转

如图1-36所示,质量为m的负电荷-q以初速度v0平行两金属板进入电场。设两板间的电势为U,板长为L,板间距离为d。则带电粒子在电场中所做的是类似平抛的运动。

(1)带电粒子经过电场所需时间(可根据带电粒子在平行金属板方向做匀速直线运动求)

(2)带电粒子的加速度(带电粒子在垂直金属板方向做匀加速直线运动)

(3)离开电场时在垂直金属板方向的分速度

(4)电荷离开电场时偏转角度的正切值

3.处理带电粒子在电场中运动问题的思想方法

(1)动力学观点

这类问题基本上是运动学、动力学、静电学知识的综合题。处理问题的要点是要注意区分不同的物理过程,弄清在不同物理过位移公式X=Vot+1/2·at^2=Vo·t(匀速直线运动)程中物体的受力情况及运动性质,并选用相应的物理规律。 能用来处理该类问题的物理规律主要有:牛顿定律结合直线运动公式;动量定理;动量守恒定律。

(2)功能观点

对于有变力参加作用的带电体的运动,必须借助于功能观点来处理。即使都是恒力作用问题,用功能观点处理也常常显得简洁。具体方法常用两种:

①用动能定理。

②用包括静电势能、内能在内的能量守恒定律。

【说明】 该类问题中分析电荷受力情况时,常涉及“重力”是否要考虑的问题。一般区分为三种情况:

①对电子、质子、原子核、(正、负)离子等带电粒子均不考虑重力的影响; ②根据题中给出的数据,先估算重力mg和电场力qE的值,若mg重力;

③根据题意进行分析,有些问题中常隐含着必须考虑重力的情况,诸如“带电颗粒”、“带电液滴”、“带电微粒”、“带电小球”等带电体常常要考虑其所受的重力。总之,处理问题时要具体问题具体分析。

物理学考公式

9.静电屏蔽:处于电场中的空腔导体或金属网罩,其空腔部分的场强处处为零,即能把外电场遮住,使内部不受外电场的影响,这就是静电屏蔽.

1、匀速直线运动的位移公式:x=vt

2、匀变速直线运动的速度公式:v=v0+at

3、匀变速直线运动的位移公式:x=v0t+at2/2

4、牛顿第二定律⑵使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带电 ③感应起电。:F=ma

5、曲线运动的线速度:v=s/t

7、线速度和角速度的关系:v=ωr

8、周期和频率的关系:Tf=1

9、向心加速度的关系:a=ω2ra=v2/ra=4π2r/T2

10、力对物体做功的计算式:W=FL

由Vt=at,得Vt∝t。14、机械能守恒定律:mgh1+mv12/2=mgh2+mv22/2

2017高考物理知识点:简谐振动回复力理解

13、重力势能的计算式:Ep=mgh

动量守恒定律是宏观世界和微观遵守的共同规律,应用非常广泛。动量守恒定律的适用条件是相互作用的物质系统不受外力,实际上我们知道,真正满足不受外力的情况几乎是不存在的。所以,动量守恒定律应用重在“三个”选取。

1、电磁场理论的核心之一:变化的磁场产生电场在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解:(1)均匀变化的磁场产生稳定电场(2)非均匀变化的磁场产生变化电场2、电磁场理论的核心之二:变化的电场产生磁场麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场

动量守恒条件近似性的选取

根据动量守恒定律成立时的受力情况分以下三种:

(1)系统受到的合外力为零的情况。

(2)系统所受的外力比相互作用力(内力)小很多,以致可以忽略外力的3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}影响。

因为动量守恒定律是针对系统而言的,它告诉我们,系统内各个物体之间尽管有内力作用,不管这些内力是什么性质的力,系统内力的冲量只能改变系统中单个物体的动量,而不能改变系统的总动量。如碰撞问题中摩擦力,碰撞过程中的重力等外力比相互作用的内力小得多且碰撞时间很小时,可忽略其力的冲量的影响,认为系统的总动量守恒。这是物理学中忽略次要因素,突出重点的常用方法。

(3)系统整体上不满足动量守恒的条件,但在某一特定方向上,系统不受外力或所受的外力远小于内力,则系统沿这一方向的分动量守恒。

在高一物理教材中,回复力是根据水平方向的弹簧振子的振动规律总结出来的,即回复力指的是使弹簧振子回到平衡位置的力亦即弹簧的弹力。这就使得学生对回复力的理解比较狭隘,且不能将它灵活应用到其它的简谐振动模式中去。因此我们在高三复习时有必要将回复力问题讲清、讲透。

一、给回复力完整的定义。

回复力是指振动物体所受的总是指向平衡位置的合外力。从此定义中让学生认识到:

1.回复力是合外力,不单纯是指某一个力。它是根据力的作用效果命名的,类似于向心力。

2.回复力的方向是“指向平衡位置”。如图作简谐

振动的单摆,受重力和绳的拉力作用,绳的拉力和重 力的法向分力的合力提供圆周运动的向心力;指向平衡位置的合外力是重力的切向分力,它提供了单摆振动的回复力。

二、加强对回复力公式的理解和应用。

简谐振动的回复力公式为F=-KX

1.式中“—”号表示回复力的方向与物体对平衡位置的位移方向相反,亦即指向平衡位置。计算时为避免发生错误,将“—”号省去,直接判断回复力的方向。

2. 式中K是指回复力与位移成正比的比例系数,不能与弹簧的劲度系数相混淆。如上图单摆的振动中:F=mgsinα,若α<5°,有sinα=X/L,则F= mgX/L,即K=mg/L 。一般而言,弹簧振子的振动中K表示弹簧的劲度系数,但也不能一概而论。

物理高考必考公式

要判断变轨前后速度的变化问题,首先是要分析轨道半径的变化,即卫星是从高轨道变轨到低轨道,还是从低轨道变轨到高轨道;然后再利用万有引力定律和向心力公式判断速度的变化.

物理高考必考公式如下:

2.电磁场与电磁波

理解口诀:

1、物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。

高中物理知识点总结二:曲线运动、万有引力

理解口诀:

1、运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。

2、圆周运动向心力,供需关系在心里,径向合力提供足,供求平衡不心离;物理方程很关键,一串公式是武器。

高中物理知识点总结三:力(常见的力、力的合成与分解)

1)常见的力

2)力的合成与分解

四、动力学(运动和力)

五、振动和波(机械振动与机械振动的传播)

六、冲量与动量(物体的受力与动量的变化)

七、功和能(功是能量转化的量度)

八、分子动理论、能量守恒定律

九、气体的性质

十、电场

十一、恒高考物理电场与磁场知识点公式总结大全相关 文章 :定电流

十二、磁场

十三、电磁感应

十四、交变电流(正弦式交变电流)

高考物理公式解析总结

12、动能定理:W=mvt2/2-mv02/2

高中物理与九年义务 教育 物理或者科学课程相衔接,主旨在于进一步提高同学们的科学素养,与实际生活联系紧密,下面我给大家整理了关于高考物理公式解析 总结 ,欢迎大家阅读!

1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)

2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总

3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2

4.理想变压器原副线圈中的电压与电流及功率关系

U1/U2=n1/n2; I1/I2=n2/n2; P入=P出

5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;

6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。

注:(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;

(2)发电机中,线圈在中性面位置磁通量,感应电动势为零,过中 性面电流方向就改变;

(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;

(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;

1.LC振荡电路T=2π(LC)1/2;f=1/T {f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}

2.电磁波在真空中传播的速度c=3.00×108m/s,λ=c/f {λ:电磁波的波长(m),f:电磁波频率}

注:(1)在LC振荡过程中,电容器电量时,振荡电流为零;电容器电量为零时,振荡电流;

(2)麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场;

磁场公式总结

1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A m

2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

洛仑兹力对带电粒子不做功(任何情况下)电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。;(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

高考 物理 3. 高考物理磁场公式总结 学习 方法

爱因斯坦有个成功的公式:A=X+Y+Z。A代表成功,X代表艰苦劳动,Y代表正确方法,Z代表少说废话。这个公式指明事业成功的三要素。对于学业来说,成功也有三要素:学习成功=心理素质十学习方法十智能素质

(1)学习的动机。学习需要动机。由于学生的个人需要而产生的学习内驱力很重要。有人有旺盛的求知欲,对学习有浓厚的兴趣,正是如此,如升学、就业、兴趣、 爱好 、荣誉、地位、求知欲、事业、前途等都是。我们要努力强化学习的动机,如树立远大理想;参加各种竞赛,挑战强者,激起学习欲望;看到自己学习成果而受鼓励,从而增强自信,经受挫折,要有不甘失败和屈辱的精神。

(2)学习的兴趣。浓厚的学习兴趣与效率有密切关系,可以从好奇心和求知欲中激发学习兴趣。如物理的实验,化学的变化等,容易引起人的好奇和求知;培养对各门功课的兴趣。往往是刻苦学习后,才发现知识的奥秘和用途,才提高学习成绩,所以一定要钻进书海去;把知识应用于实践,激发兴趣,用自己所学的知识分析解决出问题时,那种成功感易激发学习兴趣。

(3)学习的情感、意志和态度。将积极的情感同学习联系起来,防止消极情绪的滋生,可以促进学习。善于控制自己,是学习意志力培养的关键。控制和约束自己的行动,控制不需要的想法和情绪,可以使思想集中到学习上来,这点是尤为重要的。

高考物理公式解析总结相关 文章 :

★ 高中物理公式总结归纳

★ 2020高考物理公式必背大汇总

★ 高考物理公式小知识点

★ 高一物理公式大全总结

★ 高考物理必考知识点及公式总结

★ 高考必备物理公式

★ 高中物理知识点总结与公式归纳

★ 高考物理知识点公式总结电场与磁场

★ 高考物理必备公式大全

高中物理公式 最常考的5大高中物理公式

交变电流公式总结

1、牛顿第二定律F合=ma;牛顿第二定11、功率的计算式:P=W/t律建立起了运动与力的桥梁,是历年全国所有高考物理试卷必考的公式。

2、动量守恒定律m1v1+m2v2=(m1+m2)v共;凡是规定动量为考试内容的试卷,动量守恒定律是必考的。

3、洛伦兹力充当向心力的公式Bvq=mv^2/R;研究带电粒子在磁场中运动最关键的公式。

4、法拉第电磁感应定律E=BLv;电磁感应最核心的公式,联系起运动学、磁场、电路之间的桥梁。

5、平抛运动两个方向上的位高中物理知识点总结一:直线运动移公式;x=v0t;y=1/2gt^2。

高二会考物理必考公式

13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

高二会考物理必考公式有:动量守恒定律m1v1+m2v2=(m1+m2)v;牛顿第二定律F合=ma;洛伦兹力充当判断加速度、周期、角速度和能量变化问题的前提是判断轨道半径的变化,然后再根据等式向心力的公式Bvq=mv^2/R等。

(5)电场强度的叠加:电场强度是矢量,当空间的电场是由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和.

高中物理是自然科学的基础科目之一。高中物理课本共三册,其中,二册为必修,第三册为必修加选修。物理在绝大多数的省份既是会考科目又是高考科目,在高中的学习中占有重要地位。

1、知识深度,理解加深。高中物理,要加深对重要物理知识的理解,有些将由定性讨论进入定量计算,如力和运动的关系、动能概念、电磁感应、核能等。

2、知识广度,范围扩大。高中物理,要扩大物理知识的范围,学习很多初中未学过的新内容,如力的合成与分解、牛顿万有引力定律、动量定理、动量守恒定律、光的本性等。

3、知识应用,能力提高。高中不仅要学习物理知识,更重要的是提高学习物理知识和应用物理知识的能力,高中阶段主要是自学能力和物理解题能力,并学会一些常用的物理研究的方法。

物理:

物理学是研究物质运动最一般规律和物质基本结构的学科。作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科的研究基础。它的理论结构充分地运用数学作为自己的工作语言,以实验作为检验理论正确性的标准,它是当今最精密的一门自然科学学科。

物理学是一种自然科学,注重于研究物质、能量、空间、时间,尤其是它们各自的性质与彼此之间的相互关系。物理学是关于大自然规律的知识;更广义地说,物理学探索分析大自然所发生的现象,以了解其规则。

2017高考物理变轨模型知识点

★ 高考物理公式总结归纳

目前,高三的同学已经开始了高考复习,在这一阶段的复习当中,我们要注重对基础知识的掌握,牢固的基础知识会为我们今后的深入复习打下基础。以下是我为您整理的关于2017高考物理变轨模型知识点的相关资料,供您阅读。

2017高考物理变轨模型知识点

变轨模型是卫星由于某种原因从一轨道运动到另一轨道,变轨前后卫星运行的轨道半径发生变化,卫星运行的速度、角速度、加速度、能量等相应也发生变化.当卫星在稳定运行时,万有引力提供卫星做匀速圆周运动的向心力,如果卫星在稳定轨道上运行时向心力发生变化,那么卫星就会偏离原轨道运动,从而做离心或向心运动.常见的卫星变轨有轨道渐变和轨道突变两种.

1.卫星轨道的渐变

卫星在运行过程中,会受到外界因素的影响,使卫星的轨道缓慢地发生变化,即轨道逐渐增大或逐渐减小,在卫星轨道逐渐变化的过程中,仍然可以将卫星在每一轨道上的运动看成是匀速圆周运动.分析这类问题的关键是要判断出卫星是做离心运动还是向心运动,分清卫星运行的轨道半径是变大还是变小.

2.卫星轨道的突变

在发射卫星的过程中,为使卫星在很短的时间内从一轨道变轨到某一预定轨道,需要启动发动机.现在我国已发射“神舟号”飞船、“嫦娥号”卫星、“萤火一号”火星探测器、“天宫一号”目标飞行器等都需要经过变轨才到达预定的轨道,这种变轨一般都可以看成是突变.有时,在卫星的发射过程中,需要多次变轨,即需要多次启动发动机使卫星轨道发生突变.

3.卫(1)电势是个相对的量,某点的电势与零电势点的选取有关(通常取离电场无穷远处或大地的电势为零电势).因此电势有正、负,电势的正负表示该点电势比零电势点高还是低.星变轨的特点

(1)卫星在轨道上某点开始加速,向心力大于地球与卫星之间的万有引力,卫星做离心运动,达到另一稳定轨道后继续做圆周运动.由于变轨前的轨道半径r1小于变轨后的轨道半径r2,则变轨后卫星的运行速度v2小于变轨前卫星的运行速度v1.

(2)变轨前后,卫星的机械能一般会发生变化.⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用力就是通过电场发生的。电荷的多少叫电量。基本电荷。带电体电荷量等于元电荷的整数倍(Q=ne)卫星从低轨道变轨到高轨道,必须点火使卫星加速,而卫星在高轨道上运行时,运行速度减小,则动能减小,重力势能增加.由于点火使卫星变轨,变轨前后的机械能不守恒.

(3)在处理变轨的试题时,出错的原因有:不清楚变轨的实质,对卫星运行的规律和变轨前后的能量关系理解模糊,

模型1 考查变轨前后速度的变化问题

模型2 考查变轨前后周期、角速度和能量的变化问题

分析问题.对于能量问题,要知道卫星从低轨道变到高轨道运行时需要点火使卫星加速,变轨后卫星的速度变小,动能变小,重力势能变大,总的机械能变大.

模型3 考查变轨前后的失重问题

高考物理电场与磁场知识点公式总结大全

带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷。

物理,在很多人的眼里是理综成绩的“杀手”。那是因为高中物理知识点多,难度大,导致很多人对物理产生了恐惧心理,下面由我为整理高考物理 电场与磁场 知识点公式 总结 ,希望对大家有所帮助!

物理学考公式如下:

高考物理磁场公式总结

1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A m

2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

3.洛仑兹力f=qVB(注V⊥B);质谱仪 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,

洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

高考物理电场公式总结

1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍

2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}

5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

7.电势与电势:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的值}

11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)

12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势)(V)}

高考物理电场知识点

1.有关场强E(电场线)、电势(等势面)、W=qU、动能与电势能的比较。

2.带电粒子在电场中运动情况(加速、偏转类平抛)的比较,运动轨迹和方向(一直向前?往返?)的分析判别。[联系实际与综合]①直线加速器②示波器原理③静电除尘与选矿④滚筒式静电分选器⑤复印机与喷墨打印机⑥静电屏蔽⑦带电体的力学分析(综合平衡、牛顿第二定律、功能、单摆等)⑧带电体在电场和磁场中运动⑨氢原子的核外电子运行。

电荷电荷守恒定律点电荷

⑵使物体带电也叫起电。使物体带电的 方法 有三种:①摩擦起电②接触带电③感应起电。

⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。

高考物理知识点总结电场与磁场

1.电磁场

在电磁学里,电磁场是一种由带电物体产生的一种物理场。处于电磁场的带电物体会感受到电磁场的作用力。电磁场与带电物体(电荷或电流)之间的相互作用可以用麦克斯韦方程和洛伦兹力定律来描述。

电磁波是电磁场的一种运动形态。电与磁可说是一体两面,变动的电场会产生磁场,变动的磁场则会产生电场。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。

3.电磁场理论

研究电磁场中各物理量之间的关系及其空间分布和时间变化的理论。人们注意到电磁现象首先是从它们的力学效应开始的。库仑定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。A.-M.安培等人又发现电流元之间的作用力也符合平方反比关系,提出了安培环路定律。

高考电场知识点归纳

1.电荷 电荷守恒定律 点电荷

⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用力就是通过电场发生的。电荷的多少叫电量。基本电荷 。带电体电荷量等于元电荷的整数倍(Q=ne)

⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。

在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,数学表达式为 ,其中比例常数 叫静电力常量, 。(F:点电荷间的作用力(N), Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引)

库仑定律的适用条件是(a)真空,(b)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。

3.静电场 电场线

为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。

电场线的特点:

(a)始于正电荷 (或无穷远),终止负电荷(或无穷远);

(b)任意两条电场线都不相交。

4.电场强度 点电荷的电场

⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述。在电场中放入一个检验电荷 ,它所受到的电场力 跟它所带电量的比值 叫做这个位置上的电场强度,定义式是 ,场强是矢量,规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向相反。(E:电场强度(N/C),是矢量,q:检验电荷 的电量(C))

电场强度 的大小,方向是由电场本身决定的,是客观存在的,与放不放检验电荷,以及放入检验电荷的正、负电量的多少均无关,既不能认为 与 成正比,也不能认为 与 成反比。

点电荷场强的计算式 ( r:源电荷到该位置的距离(m),Q:源电荷的电量(C))

5.电势能 电势 等势面

电势能由电荷在电场中的相对位置决定的能量叫电势能。

电势能具有相对性,通常取无穷远处或大地为电势能和零点。

由于电势能具有相对性,所以实际的应用意义并不大。而经常应用的是电势能的变化。电场力对电荷做功,电荷的电势能减速少,电荷克服 电场力做功,电荷的电势能增加,电势能变化的数值等于电场力对电荷做功的数值,这常是判断电荷电势能如何变化的依据。电场力对电荷做功的计算公式: ,此公式适用于任何电场。电场力做功与路径无关,由起始和终了位置的电势决定。

高考物理电场知识点总结

1.两种电荷(1)自然界中存在两种电荷:正电荷与负电荷.(2)电荷守恒定律

(1)内容:在真空中两个点电荷间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在它们的连线上.

(2)适用条件:真空中的点电荷.

点电荷是一种理想化的模型.如果带电体本身的线度比相互作用的带电体之间的距离小得多,以致带电体的体积和形状对相互作用力的影响可以忽略不计时,这种带电体就可以看成点电荷,但点电荷自身不一定很小,所带电荷量也不一定很少.

3.电场强度、电场线

(1)电场:带电体周围存在的一种物质,是电荷间相互作用的媒体.电场是客观存在的,电场具有力的特性和能的特性.

(2)电场强度:放入电场中某一点的电荷受到的电场力跟它的电荷量的比值,叫做这一点的电场强度.定义式:

E=F/q方向:正电荷在该点受力方向.

(3)电场线:在电场中画出一系列的从正电荷出发到负电荷终止的曲线,使曲线上每一点的切线方向都跟该点的场强方向一致,这些曲线叫做电场线.电场线的性质:①电场线是起始于正电荷(或无穷远处),终止于负电荷(或无穷远处);②电场线的疏密反映电场的强弱;③电场线不相交;④电场线不是真实存在的;⑤电场线不一定是电荷运动轨迹.

(4)匀强电场:在电场中,如果各点的场强的大小和方向都相同,这样的电场叫匀强电场.匀强电场中的电场线是间距相等且互相平行的直线.

4.电势U:电荷在电场中由一点A移动到另一点B时,电场力所做的功WAB与电荷量q的比值WAB/q叫做AB两点间的电势.公式:UAB=WAB/q电势有正负:UAB=-UBA,一般常取,写成U.

5.电势φ:电场中某点的电势等于该点相对零电势点的电势.

(2)沿着电场线的方向,电势越来越低.

6.电势能:电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处(电势为零处)电场力所做的功ε=qU

7.等势面:电场中电势相等的点构成的面叫做等势面.

(1)等势面上各点电势相等,在等势面上移动电荷电场力不做功.

(2)等势面一定跟电场线垂直,而且电场线总是由电势较高的等势面指向电势较低的等势面.

(3)画等势面(线)时,一般相邻两等势面(或线)间的电势相等.这样,在等势面(线)密处场强大,等势面(线)疏处场强小.

8.电场中的功能关系

(1)电场力做功与路径无关,只与初、末位置有关.

计算方法有:由公式W=qEcosθ计算(此公式只适合于匀强电场中),或由动能定理计算.

(2)只有电场力做功,电势能和电荷的动能之和保持不变.

(3)只有电场力和重力做功,电势能、重力势能、动能三者之和保持不变.

1. 高考物理磁场公式及知识点总结

2. 高中物理电场公式大全

4. 高中物理电场磁场的重要知识点

5. 高考物理知识点大全集锦

6. 高考物理电磁场和电磁波知识点

7. 高考物理知识点总结

8. 高中物理磁场公式大全

9电磁振荡和电磁波公式总结. 高中物理知识点整理大全

10. 高中物理磁场知识点归纳 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();